14 research outputs found

    Long Term Evolution-Advanced and Future Machine-to-Machine Communication

    Get PDF
    Long Term Evolution (LTE) has adopted Orthogonal Frequency Division Multiple Access (OFDMA) and Single Carrier Frequency Division Multiple Access (SC-FDMA) as the downlink and uplink transmission schemes respectively. Quality of Service (QoS) provisioning is one of the primary objectives of wireless network operators. In LTE-Advanced (LTE-A), several additional new features such as Carrier Aggregation (CA) and Relay Nodes (RNs) have been introduced by the 3rd Generation Partnership Project (3GPP). These features have been designed to deal with the ever increasing demands for higher data rates and spectral efficiency. The RN is a low power and low cost device designed for extending the coverage and enhancing spectral efficiency, especially at the cell edge. Wireless networks are facing a new challenge emerging on the horizon, the expected surge of the Machine-to-Machine (M2M) traffic in cellular and mobile networks. The costs and sizes of the M2M devices with integrated sensors, network interfaces and enhanced power capabilities have decreased significantly in recent years. Therefore, it is anticipated that M2M devices might outnumber conventional mobile devices in the near future. 3GPP standards like LTE-A have primarily been developed for broadband data services with mobility support. However, M2M applications are mostly based on narrowband traffic. These standards may not achieve overall spectrum and cost efficiency if they are utilized for serving the M2M applications. The main goal of this thesis is to take the advantage of the low cost, low power and small size of RNs for integrating M2M traffic into LTE-A networks. A new RN design is presented for aggregating and multiplexing M2M traffic at the RN before transmission over the air interface (Un interface) to the base station called eNodeB. The data packets of the M2M devices are sent to the RN over the Uu interface. Packets from different devices are aggregated at the Packet Data Convergence Protocol (PDCP) layer of the Donor eNodeB (DeNB) into a single large IP packet instead of several small IP packets. Therefore, the amount of overhead data can be significantly reduced. The proposed concept has been developed in the LTE-A network simulator to illustrate the benefits and advantages of the M2M traffic aggregation and multiplexing at the RN. The potential gains of RNs such as coverage enhancement, multiplexing gain, end-to-end delay performance etc. are illustrated with help of simulation results. The results indicate that the proposed concept improves the performance of the LTE-A network with M2M traffic. The adverse impact of M2M traffic on regular LTE-A traffic such as voice and file transfer is minimized. Furthermore, the cell edge throughput and QoS performance are enhanced. Moreover, the results are validated with the help of an analytical model

    Long Term Evolution-Advanced und ZukĂŒnftige Machine-to-Machine Kommunikation

    No full text
    Long Term Evolution (LTE) has adopted Orthogonal Frequency Division Multiple Access (OFDMA) and Single Carrier Frequency Division Multiple Access (SC-FDMA) as the downlink and uplink transmission schemes respectively. Quality of Service (QoS) provisioning is one of the primary objectives of wireless network operators. In LTE-Advanced (LTE-A), several additional new features such as Carrier Aggregation (CA) and Relay Nodes (RNs) have been introduced by the 3rd Generation Partnership Project (3GPP). These features have been designed to deal with the ever increasing demands for higher data rates and spectral efficiency. The RN is a low power and low cost device designed for extending the coverage and enhancing spectral efficiency, especially at the cell edge. Wireless networks are facing a new challenge emerging on the horizon, the expected surge of the Machine-to-Machine (M2M) traffic in cellular and mobile networks. The costs and sizes of the M2M devices with integrated sensors, network interfaces and enhanced power capabilities have decreased significantly in recent years. Therefore, it is anticipated that M2M devices might outnumber conventional mobile devices in the near future. 3GPP standards like LTE-A have primarily been developed for broadband data services with mobility support. However, M2M applications are mostly based on narrowband traffic. These standards may not achieve overall spectrum and cost efficiency if they are utilized for serving the M2M applications. The main goal of this thesis is to take the advantage of the low cost, low power and small size of RNs for integrating M2M traffic into LTE-A networks. A new RN design is presented for aggregating and multiplexing M2M traffic at the RN before transmission over the air interface (Un interface) to the base station called eNodeB. The data packets of the M2M devices are sent to the RN over the Uu interface. Packets from different devices are aggregated at the Packet Data Convergence Protocol (PDCP) layer of the Donor eNodeB (DeNB) into a single large IP packet instead of several small IP packets. Therefore, the amount of overhead data can be significantly reduced. The proposed concept has been developed in the LTE-A network simulator to illustrate the benefits and advantages of the M2M traffic aggregation and multiplexing at the RN. The potential gains of RNs such as coverage enhancement, multiplexing gain, end-to-end delay performance etc. are illustrated with help of simulation results. The results indicate that the proposed concept improves the performance of the LTE-A network with M2M traffic. The adverse impact of M2M traffic on regular LTE-A traffic such as voice and file transfer is minimized. Furthermore, the cell edge throughput and QoS performance are enhanced. Moreover, the results are validated with the help of an analytical model

    Data aggregation of mobile M2M traffic in relay enhanced LTE-A networks

    No full text
    Machine-to-machine (M2M) communication is becoming an increasingly essential part of mobile traffic and thus also a major focus of the latest 4G and upcoming 5G mobile networks. M2M communication offers various ubiquitous services and is one of the main enablers of the Internet-of-things (IoTs) vision. Nevertheless, the concept of mobile M2M communication has emerged due to the wide range, coverage provisioning, high reliability as well as decreasing costs of future mobile networks. Resultantly, M2M traffic poses drastic challenges to mobile networks, particularly due to the expected large number of devices sending small-sized data. Moreover, mobile M2M traffic is anticipated to degrade the performance of traditional cellular traffic due to inefficient utilization of the scarce radio spectrum. This paper presents a novel data aggregation and multiplexing scheme for mobile M2M traffic and thus focuses on the latest 3GPP (3 r d Generation Partnership Project) tong-term-evolution-advanced (LTE-A) networks. 3GPP standardized layer 3 inband Relay Nodes (RNs) are used to aggregate uplink M2M traffic by sharing the Physical Resource Blocks (PRBs) among several devices. The proposed scheme is validated through extensive system level simulations in an LTE-A based implementation for the Riverbed Modeler simulator. Our simulation results show that besides coverage extensions, RNs serve approximately 40 % more M2M devices with the proposed data multiplexing scheme compared to the conventional without multiplexing approach. Moreover, in this paper an analytical model is developed to compute the multiplexing transition probabilities. In the end, the simulation and analytical results of multiplexing transition probabilities are compared in order to analyze the multiplexing scheme

    Cyber Secure Framework for Smart Agriculture: Robust and Tamper-Resistant Authentication Scheme for IoT Devices

    No full text
    Internet of Things (IoT) as refers to a network of devices that have the ability to connect, collect and exchange data with other devices over the Internet. IoT is a revolutionary technology that have tremendous applications in numerous fields of engineering and sciences such as logistics, healthcare, traffic, oil and gas industries and agriculture. In agriculture field, the farmer still used conventional agriculture methods resulting in low crop and fruit yields. The integration of IoT in conventional agriculture methods has led to significant developments in agriculture field. Different sensors and IoT devices are providing services to automate agriculture precision and to monitor crop conditions. These IoT devices are deployed in agriculture environment to increase yields production by making smart farming decisions and to collect data regarding crops temperature, humidity and irrigation systems. However, the integration of IoT and smart communication technologies in agriculture environment introduces cyber security attacks and vulnerabilities. Such cyber attacks have the capability to adversely affect the countries’ economies that are heavily reliant on agriculture. On the other hand, these IoT devices are resource constrained having limited memory and power capabilities and cannot be secured using conventional cyber security protocols. Therefore, designing robust and efficient secure framework for smart agriculture are required. In this paper, a Cyber Secured Framework for Smart Agriculture (CSFSA) is proposed. The proposed CSFSA presents a robust and tamper resistant authentication scheme for IoT devices using Constrained Application Protocol (CoAP) to ensure the data integrity and authenticity. The proposed CSFSA is demonstrated in Contiki NG simulation tool and greatly reduces packet size, communication overhead and power consumption. The performance of proposed CSFSA is computationally efficient and is resilient against various cyber security attacks i.e., replay attacks, Denial of Service (DoS) attacks, resource exhaustion

    Medium Access-Based Scheduling Scheme for Cyber Physical Systems in 5G Networks

    No full text
    The development of the 5G mobile communication standard attempts to meet the future needs of data users. The impact of Cyber Physical Systems (CPS) is crucial in Internet of Things (IoT) and other emerging technologies. The design of medium access mechanisms for CPS such as radio resource scheduling schemes has a significant effect on network performance. Recent literature shows that limited work is available on uplink scheduling schemes, particularly in the 5G domain. Planning a network that can address the modern needs of users entails efficient CPS scheduling mechanisms such that resources are amicably distributed between users of contrasting priorities. The prime focus of this work is to design and develop an uplink radio resource scheduling framework for CPS-based future networks such as 5G. In the designed framework, scarce radio resources are sought to be distributed efficiently according to the service-based needs of users. The proposed scheduling scheme is a service aware (SA) scheduler designed for CPS in accordance with the 5G network peculiarities, intended to achieve higher throughput and reduced latency. The proposed SA scheduler supports multi-bearer traffic and is capable of providing resources in adverse channel conditions in an efficient manner. The SA scheduling mechanism’s performance is evaluated and compared with renowned scheduling algorithms such as blind equal throughput (BET), maximum throughput (MT), and proportional fair (PF) scheduling schemes. The simulation results obtained in a cellular environment demonstrate that the SA scheduler achieves acceptable cell throughput and end-to-end delay results in all scenarios and out-performs other contemporary scheduling schemes

    Wideband Singly Fed Compact Circularly Polarized Rectangular Dielectric Resonator Antenna for X-Band Wireless Applications

    No full text
    This work focuses on a compact circularly polarized wideband rectangular dielectric resonator antenna (RDRA) for X-band wireless applications. The wideband response of the RDRA is initially generated by a coaxial probe, a compact RDR, an air gap in the DR and a slot of rectangular shape in the ground. The circular polarization is achieved via incorporation of a unique feeding mechanism. The edge feeding of the RDRA with a coaxial probe generates the orthogonal modes in RDRA that make the design polarized circularly. The axial ratio performance is improved by adding a copper strip on the top of the DR. To validate the simulated results, the prototype design is fabricated and measured results are noted. For −10 dB reference value, the prototype has 59.74% impedance bandwidth (8.45–14.09 GHz). For 3 dB reference value of the axial ratio, the prototype has 9.24% Circular Polarization (CP) performance (10.084–11.084 GHz). The design has 6.5 dBic peak gain and 95.5% peak efficiency. Results show that simulated results are in close agreement with the measured results

    Wideband Singly Fed Compact Circularly Polarized Rectangular Dielectric Resonator Antenna for X-Band Wireless Applications

    No full text
    This work focuses on a compact circularly polarized wideband rectangular dielectric resonator antenna (RDRA) for X-band wireless applications. The wideband response of the RDRA is initially generated by a coaxial probe, a compact RDR, an air gap in the DR and a slot of rectangular shape in the ground. The circular polarization is achieved via incorporation of a unique feeding mechanism. The edge feeding of the RDRA with a coaxial probe generates the orthogonal modes in RDRA that make the design polarized circularly. The axial ratio performance is improved by adding a copper strip on the top of the DR. To validate the simulated results, the prototype design is fabricated and measured results are noted. For −10 dB reference value, the prototype has 59.74% impedance bandwidth (8.45–14.09 GHz). For 3 dB reference value of the axial ratio, the prototype has 9.24% Circular Polarization (CP) performance (10.084–11.084 GHz). The design has 6.5 dBic peak gain and 95.5% peak efficiency. Results show that simulated results are in close agreement with the measured results

    Method for Handling Massive IoT Traffic in 5G Networks

    No full text
    The ever-growing Internet of Things (IoT) data traffic is one of the primary research focuses of future mobile networks. 3rd Generation Partnership Project (3GPP) standards like Long Term Evolution-Advanced (LTE-A) have been designed for broadband services. However, IoT devices are mainly based on narrowband applications. Standards like LTE-A might not provide efficient spectrum utilization when serving IoT applications. The aggregation of IoT data at an intermediate node before transmission can answer the issues of spectral efficiency. The objective of this work is to utilize the low cost 3GPP fixed, inband, layer-3 Relay Node (RN) for integrating IoT traffic into 5G network by multiplexing data packets at the RN before transmission to the Base Station (BS) in the form of large multiplexed packets. Frequency resource blocks can be shared among several devices with this method. An analytical model for this scheme, developed as an r-stage Coxian process, determines the radio resource utilization and system gain achieved. The model is validated by comparing the obtained results with simulation results

    Enhanced Anomaly Detection System for IoT Based on Improved Dynamic SBPSO

    No full text
    The Internet of Things (IoT) supports human endeavors by creating smart environments. Although the IoT has enabled many human comforts and enhanced business opportunities, it has also opened the door to intruders or attackers who can exploit the technology, either through attacks or by eluding it. Hence, security and privacy are the key concerns for IoT networks. To date, numerous intrusion detection systems (IDS) have been designed for IoT networks, using various optimization techniques. However, with the increase in data dimensionality, the search space has expanded dramatically, thereby posing significant challenges to optimization methods, including particle swarm optimization (PSO). In light of these challenges, this paper proposes a method called improved dynamic sticky binary particle swarm optimization (IDSBPSO) for feature selection, introducing a dynamic search space reduction strategy and a number of dynamic parameters to enhance the searchability of sticky binary particle swarm optimization (SBPSO). Through this approach, an IDS was designed to detect malicious data traffic in IoT networks. The proposed model was evaluated using two IoT network datasets: IoTID20 and UNSW-NB15. It was observed that in most cases, IDSBPSO obtained either higher or similar accuracy even with less number of features. Moreover, IDSBPSO substantially reduced computational cost and prediction time, compared with conventional PSO-based feature selection methods
    corecore